Inference
self, alpha, p, tests=1) Inference(
Base class for inference.
Parameters
Name | Type | Description | Default |
---|---|---|---|
alpha | float | Probability of Type I error \(\alpha\). | required |
p | int | Number of parameters \(p\). | required |
tests | int | Number of hypothesis tests. | 1 |
Attributes
Name | Description |
---|---|
alpha | Probability of Type I error \(\alpha\). |
conf_int | Confidence intervals for each parameter (\(p \times 2\) matrix). |
estimate | Estimates for each parameter. |
n | Number of observations \(n\). |
names | Names for each parameter. |
p | Number of parameters \(p\). |
p_value | P-values for each hypothesis test. |
Methods
Name | Description |
---|---|
batch | For each sample unit in the batch |
infer | Calculate confidence interval and p-value, then |
update | Update statistics with new data. |
batch
**kwargs) Inference.batch(xs,
For each sample unit in the batch
- call
update
, - call
infer
, and - append the
Inference
object to a list.
Returns
Name | Type | Description |
---|---|---|
List[Inference] |
infer
**kwargs) Inference.infer(
Calculate confidence interval and p-value, then
- keep the maximum lower bound and minimum upper bound for the confidence interval; and
- keep the minimum p-value.
update
**kwargs) Inference.update(x,
Update statistics with new data.