InhomogeneousBernoulliProcess

multinomial.InhomogeneousBernoulliProcess(
    self
    alpha
    rho
    hypothesis
    weights
    k=100
)

Conversion rate optimization test from Lindon and Malek (2022).

Parameters

Name Type Description Default
alpha float Probability of Type I error \(\alpha\). required
rho np.ndarray Assignment probabilities \(\mathbf{\rho}\). required
hypothesis Callable[[cp.Variable], List[cp.Constraint]] Function to generate hypothesis constraints. required
weights np.ndarray Contrast weights \(W\). required
k float Concentration for Dirichlet prior parameters \(\mathbf{\alpha}_0 = k \mathbf{\rho}\). 100

Attributes

Name Description
contrasts Estimate of contrasts \(\hat{W \mathbf{\delta}}\).
hypothesis Function to generate hypothesis constraints.
weights Contrast weights \(W\).

References

Lindon, Michael, and Alan Malek. 2022. “Anytime-Valid Inference for Multinomial Count Data.” In Advances in Neural Information Processing Systems, edited by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. https://openreview.net/forum?id=a4zg0jiuVi.