InhomogeneousBernoulliProcess
multinomial.InhomogeneousBernoulliProcess(
self
alpha
rho
hypothesis
weights
k=100
)Conversion rate optimization test from Lindon and Malek (2022).
- Parent class:
Multinomial - Example
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| alpha | float | Probability of Type I error \(\alpha\). | required |
| rho | np.ndarray | Assignment probabilities \(\mathbf{\rho}\). | required |
| hypothesis | Callable[[cp.Variable], List[cp.Constraint]] | Function to generate hypothesis constraints. | required |
| weights | np.ndarray | Contrast weights \(W\). | required |
| k | float | Concentration for Dirichlet prior parameters \(\mathbf{\alpha}_0 = k \mathbf{\rho}\). | 100 |
Attributes
| Name | Description |
|---|---|
| contrasts | Estimate of contrasts \(\hat{W \mathbf{\delta}}\). |
| hypothesis | Function to generate hypothesis constraints. |
| weights | Contrast weights \(W\). |
References
Lindon, Michael, and Alan Malek. 2022. “Anytime-Valid Inference for Multinomial Count Data.” In Advances in Neural Information Processing Systems, edited by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. https://openreview.net/forum?id=a4zg0jiuVi.