Multinomial

multinomial.Multinomial(self, alpha, theta_0, k=100)

Sample ratio mismatch test from Lindon and Malek (2022).

Parameters

Name Type Description Default
alpha float Probability of Type I error \(\alpha\). required
theta_0 np.ndarray Null Multinomial parameters \(\mathbf{\theta}_0\). required
k float Concentration for Dirichlet prior parameters \(\mathbf{\alpha}_0 = k \mathbf{\theta}_0\). 100

Attributes

Name Description
alpha_0 Prior Dirichlet parameters \(\mathbf{\alpha}_0\).
counts Success counts.
odds Posterior odds.
theta Estimate of theta \(\mathbf{\hat{\theta}}\).
theta_0 Null Multinomial parameters \(\mathbf{\theta}_0\).

Methods

Name Description
update Update the model with success counts.

update

multinomial.Multinomial.update(x)

Update the model with success counts.

Parameters

Name Type Description Default
x np.ndarray Success counts. required

References

Lindon, Michael, and Alan Malek. 2022. “Anytime-Valid Inference for Multinomial Count Data.” In Advances in Neural Information Processing Systems, edited by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. https://openreview.net/forum?id=a4zg0jiuVi.